3.0 Water Resources

This chapter addresses the following types of water resources within Clark County and the cities:

- Surface water bodies (streams, lakes, and rivers);
- Floodplains;
- Shorelines;
- Critical aquifer recharge areas; and
- Wellhead protection areas.

Chapter 4 Fish and Wildlife describes stream and riparian habitats in the county.

3.1 Surface Water

3.1.1 What has changed since 2007?

The locations of streams, rivers, and lakes within Clark County have remained relatively unchanged since 2007. Figure 3-1 shows the locations of major streams, lakes, and watershed boundaries within Clark County. Changes to water quality and surface water regulations are described below.

3.1.2 Water Supply

Clark County collects water from two watersheds: the Lewis River Watershed (WRIA 27) and the Salmon-Washougal Watershed (WRIA 28). Both of the watersheds have more water supply during the winter months, when demand is low and there is more precipitation, and less during the summer, when demand for water is higher and there is less precipitation. This has resulted in the County being more reliant upon groundwater (Ecology, 2012b and Ecology, 2012c). With certain portions of available water supply already reserved to protect stream flow levels or acquired through water rights, water availability

for new uses has become limited in both WRIAs as summer and early fall streamflow levels have decreased due to climate change and population levels have increased (Ecology, 2012a and Ecology, 2012b). As a result, new well fields have been developed and more requests for water right permits have been made. The Washington State Department of Ecology has determined that the new wellfields would not likely impact protected stream flow levels because there are multiple aquifers that border the Columbia River, which provide a more sustainable water supply than many other areas in the state (Ecology, 2012a).

Photo courtesy of T. Noland

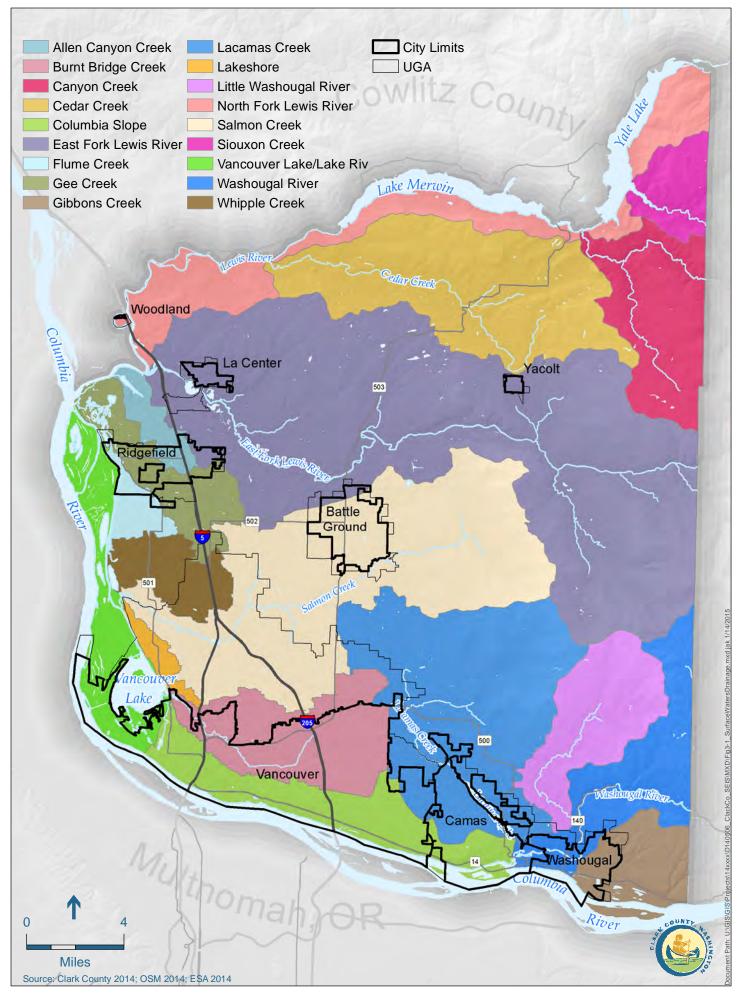


Figure 3-1: Major Surface Waters and Drainage Basins

3.1.3 Water Quality

There have been some minor changes to surface water conditions of the County since 2007, particularly with respect to water quality. Appendix B identifies streams, rivers, and lakes in Clark County that are currently listed on the 2012 Washington State 303(d) list of impaired water bodies for not meeting current surface water quality standards (Washington Administrative Code (WAC) 173-201A). The appendix also identifies the parameters that are not being met for that water body. In general, most 303(d) listed surface waters identified in the 2006 DEIS and 2007 FEIS are still on the list; however, 11 new surface waters have been added, including Big Tree, Cedar, and Yacolt Creeks, and Merwin Lake. Some surface waters that were previously identified are no longer on the 303(d) list and have been removed. Additional parameters have been added or removed from particular water bodies.

The most common causes of surface water quality impairment are high temperatures, low dissolved oxygen levels, and presence of fecal coliform bacteria. All of these impacts are typically due to human activities or development, such as removing vegetation during development that otherwise shades streams or adding new impervious areas from roads, roofs, and parking lots that increases the potential for stormwater runoff to carry sediment and pollutants into streams. Runoff from agriculture has also negatively impacted many waterways in the county.

Clark County has regulations in place to protect water quality (Clark County Code (CCC) Chapter 40.386, Stormwater and Erosion Control; CCC 13.26, Water Quality). The County adopted a modified version of the Washington State Department of Ecology's Stormwater Management Manual for Western Washington. The County recently updated its Stormwater Manual and development codes. The cities also have stormwater, drainage, and erosion control requirements. For non-exempt activities, the codes generally require applicants to prepare a stormwater management plan, implement best management practices (BMPs) to protect water quality during construction, and install detention and water quality treatment for stormwater runoff.

3.1.4 Shoreline Master Plan

Clark County's Shoreline Master Program (SMP) was approved by the Department of Ecology on August 9, 2012. The SMP took effect on September 12, 2012. Clark County, Battle Ground, Camas, La Center, Ridgefield, Vancouver, Washougal, and Yacolt all partnered in the effort to update their respective SMPs.

In the course of implementing the SMP, a discrepancy in the regulations was discovered through a development proposal on Carty Lake relating to dredging and dredge material disposal. Ecology also noted that Carty Lake was not on the list of lakes subject to shoreline jurisdiction. To address these issues, a limited amendment to the Clark County SMP has been approved. Shoreline designations are shown on Figure 3-2. The SMP provides requirements for development along shorelines to protect ecological functions. Within each shoreline designation, slightly different requirements may apply depending on the proposed activity.

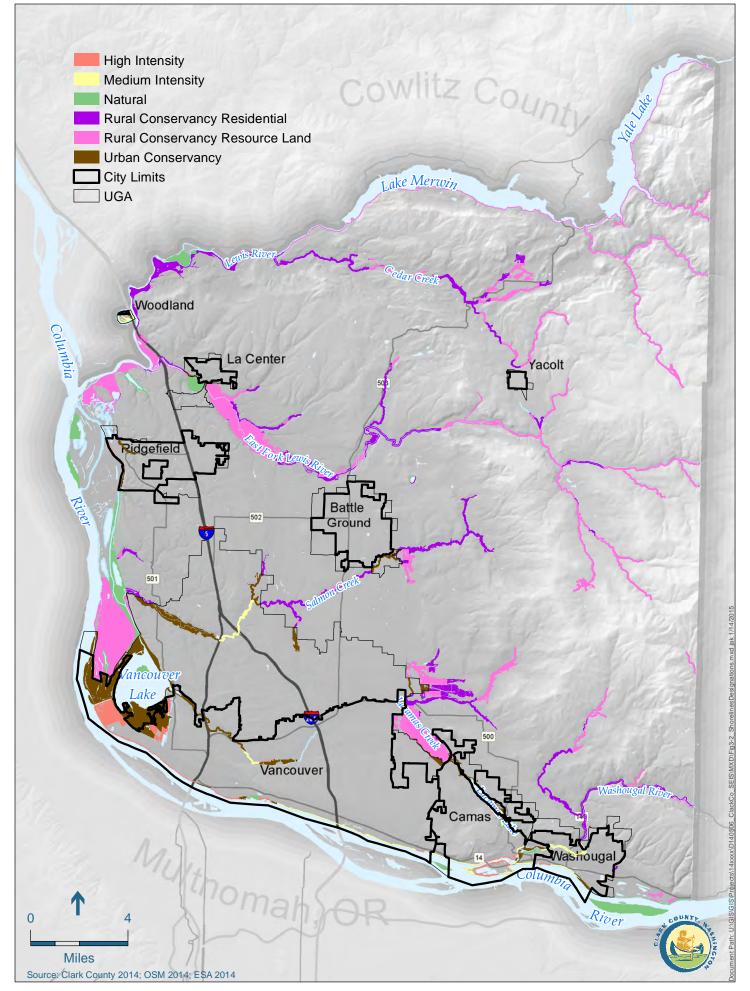


Figure 3-2: Shoreline Designations

3.1.5 Floodplain Regulations

Since 2007, the areas of special flood hazard identified by the Federal Emergency Management Agency (FEMA) have been updated in a report entitled "Flood Insurance Study, Clark County, Washington and

The floodway is the area needed to move the 1-percent flood downstream; the state of Washington does not allow construction in the floodway.

The floodway fringe is the portion of the floodplain lying on either side of the floodway.

The 500 Year Flood Area is an area that has a .2-percent chance of being equaled or exceeded in any given year; it is not the flood that will occur once every 500 years. Incorporated Areas," effective September 5, 2012, and accompanying Flood Insurance Rate Maps (FIRMs). Revisions were adopted by reference into the Clark County Code (CCC Section 40.420.010). Significant flood zones are the Floodway, Floodway Fringe and 500-Year Flood Area. Floodplain areas in Clark County are shown on Figure 3-3. The County's flood hazard regulations restrict uses that increase erosion or flood risks; require flood protection for vulnerable uses; control alteration of floodplains and stream channels; limit filling and dredging in the floodplain; and regulate the construction of flood barriers.

3.2 Groundwater Resources

3.2.1 What has changed since 2007?

There has been little change in groundwater resources since 2007. However, GIS mapping of groundwater resources and the land use/zoning potentially affecting the resources has vastly improved, allowing for more accurate long-term planning.

3.2.2 Critical Aquifer Recharge Areas

Groundwater provides 95% of the drinking water in Clark County. All of Clark County's lowlands can be considered an aquifer recharge area, as groundwater lies beneath virtually all populated areas and is used as drinking water. Although most of the county's groundwater is of good quality, there are areas where it has been degraded or contaminated due to human activities. Groundwater contamination often occurs where water demand and consumption are greatest.

The County's critical aquifer recharge area (CARA) ordinance (CCC Chapter 40.410) was established for preventing degradation, and where possible, enhancing the quality of groundwater for drinking water or business purposes. The CARA review is intended to limit potential contaminants within designated critical aquifer recharge areas. The CARA ordinance took effect August 1, 1997, and was revised in 2005.

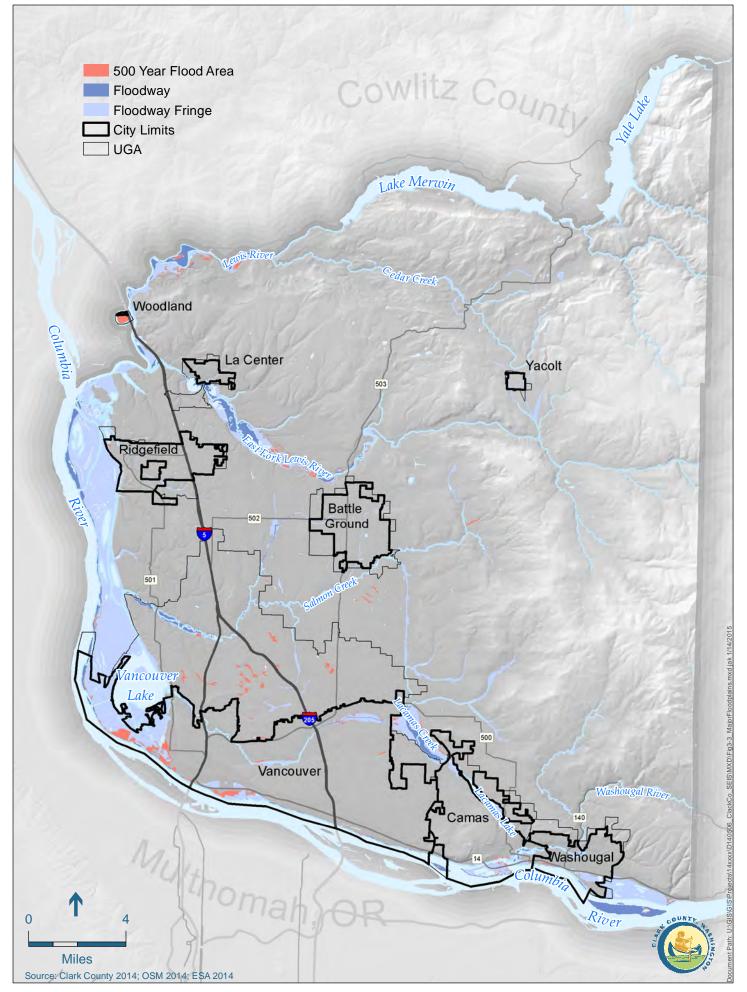


Figure 3-3: Major Flood Zones

The ordinance applies to activities in designated CARAs that include most of Clark County west of the Cascade foothills (Figure 3-4). These areas are divided into two categories based on how close they are to public drinking water. Certain activities are prohibited in Category 1 areas because they are close to public wells. These activities are permitted in Category 2 areas but require a CARA permit. There are no activities prohibited in Category 2 areas, but they may be subject to other limitations specified within the CCC. Specific BMPs are required for certain types of activities to prevent groundwater contamination.

3.2.3 Wellhead Protection Areas

The federal Safe Drinking Water Act requires every state to develop a wellhead protection program. The state Department of Health (DOH) administers the wellhead protection program in Washington. Wellhead protection helps local communities protect their groundwater-based drinking water supplies. A component of the Wellhead Protection Program is delineating wellhead protection areas. A wellhead protection area is defined as the surface and subsurface area surrounding a well or well field that contaminants are likely to pass through and eventually reach the water well(s). In simpler terms, it is the area managed by a community to protect groundwater-based public drinking water supplies (DOH, 2010). The program works with other federal, state, and local groundwater protection programs including Sole Source Aquifer Designation, Groundwater Management Area Program, Aquifer Protection Area Designation, and Critical Aquifer Recharge Area management under the Growth Management Act.

Wellhead protection areas in Clark County are shown on Figure 3-4. Since 2007, no changes to the wellhead protection areas have been documented in Clark County. The "zones of contribution" shown on the figure are based on how long it would take a particle of water to travel from the zone boundary to the well (1 year, 5 years, 10 years).

3.3 Environmental Impacts

3.3.1 What methodology was used to analyze impacts to water resources resulting from the Preferred Alternative?

Water resources can be affected by increased development due to increased impervious surfaces and intensified activities. More impervious surface can result in additional stormwater runoff carrying pollutants into water bodies and changing the amount and timing of water within streams. Some types of land uses, such as industrial facilities and some commercial operations, have the potential to release contaminants into surface and groundwater. Contaminated water sources could limit the amount and type of development allowed within an area due to reduced water quality, or could be cost prohibitive due to required treatment.

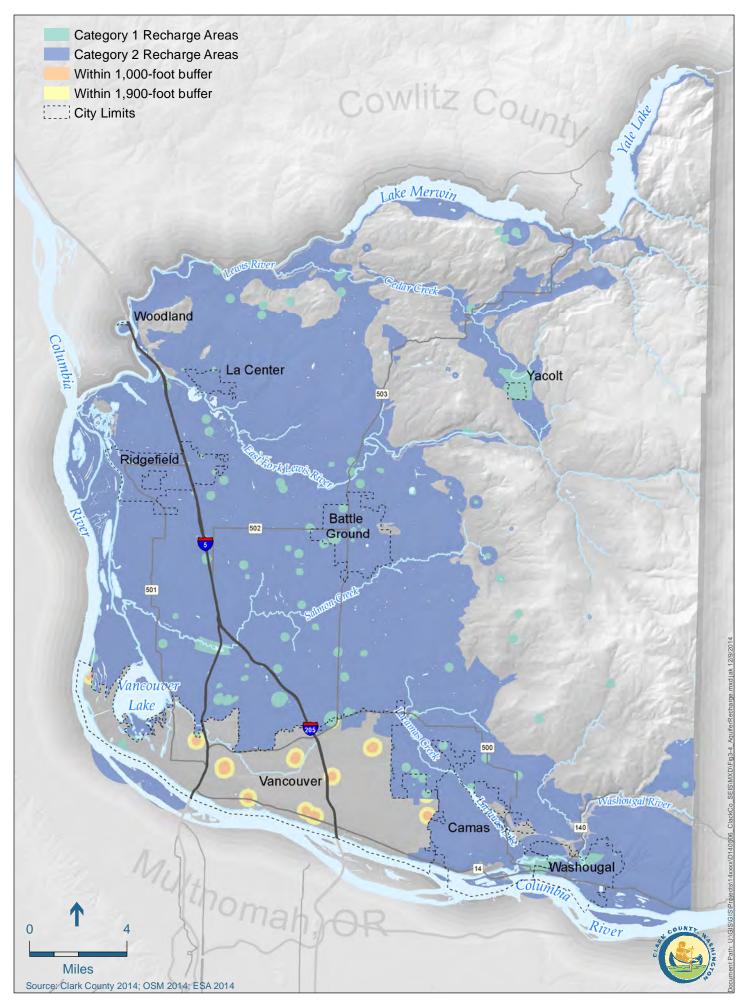


Figure 3-4: Critical Aquifer Recharge Areas

To assess the potential impacts on water resources, the project team calculated the acreage of lands added to the Urban Growth Areas (UGAs) under each alternative using GIS mapping and estimated the types of land uses that could occur with changes in zoning.

3.3.2 What are the impacts to water resources resulting from the Preferred Alternative?

All of the existing UGAs contain surface water and groundwater resources that could be affected by ongoing development. This includes hundreds of miles of streams, over 600 acres of floodprone areas, over 300 acres in shoreline jurisdiction, and over 30,000 acres in Category 1 CARAs and wellhead protection areas (see Chapter 4 for stream lengths). More intensive development within the UGAs could impact these resources; for example by increasing surface runoff and pollutants entering water bodies. However, activities potentially affecting these aquatic resources are regulated at state, federal, and local levels (for example, through local codes that require stream buffers and protection of groundwater; the

federal Clean Water Act; local SMPs; and the state Hydraulic Code). Application of current stormwater standards would reduce the impacts of new development and could improve conditions in areas that were developed prior to adoption of current stormwater requirements.

Rural Areas

Reducing minimum lot sizes may allow for increased density of development, potentially leading to impacts on water resources. However, some of the areas affected by this alternative are already at or below the minimum lot sizes that would be allowed

under this alternative. These existing smaller parcels would not be subject to subdivision and are unlikely to experience additional impacts with the proposed change in parcel size. Water resource impacts are more likely to occur when larger parcels are upzoned to allow for more intensive development.

The Preferred Alternative could allow creation of 8,024 new parcels with the potential for additional development, potentially affecting 64,108 acres spread across most of the drainage basins in the county (see Table 3-1 and Table 6-2 in Chapter 6). A comparison of the acreages potentially affected by the 2007 Comprehensive Plan and the Preferred Alternative is shown in Chapter 1, Table 1-2.

Zone	2016 Preferred Alternative		
	Number of New Parcels	Acreage Affected	
Rural	5,383	35,578	
Forest*	412	4,842	
Agriculture	1,750	20,252	
UR	n/a	n/a	
Other**	479	3,437	
TOTAL	8,024	64,108	

Table 3-1. Acreage Potentially Affected by Changes in Zoning

*The Rural Capacity Estimate excludes property in the current use program for Timber and Designated Forest Land.

** The 'Other' category is a combination of all other zoning designations that have vacant or underutilized parcels per the Rural Capacity Estimate, which are not directly affected by the zoning changes proposed in the Preferred Alternative. The exception is the UR-10 land use designations without underlying zoning that will be converted to R-5 upon implementation of the Preferred Alternative.

Development of new parcels would be subject to project-specific review and regulations intended to avoid and minimize impacts on aquatic resources. Nevertheless, some level of cumulative impact may occur as the basins become more developed. Over time, development tends to increase the proportion of impervious surface, which may increases pollutants entering surface and groundwater, changes groundwater recharge, and stormwater infiltration. Development also reduces the amount of vegetation cover in a basin, leading to changes in hydrology and alteration of biological communities. The level of impact for an individual drainage basin would depend on many factors, such as geology and hydrology of the basin, how much of the basin is already developed, the effectiveness of existing and new stormwater management systems, the location and intensity of new development, and the sensitivity of resources such as fish-bearing streams.

As stated above, there are areas within the county where groundwater has been degraded or contaminated due to increased development, as well as increased water demand and consumption. When demand increases there is a risk of pumping water out faster than it can infiltrate to replenish the aquifer. The additional development that would be allowed under the Preferred Alternative would in turn increase the number of new water wells in rural areas, and thus increase the risk of both contamination and reducing water supply. Construction of new houses, roads, and other facilities allowed by this zoning change would likely increase impervious surface area, leading to an increase in stormwater runoff that could impact stream habitat.

Overall, this alternative could have a moderate level of impact on water resources if the parcels are built out to their full potential under the proposed zoning changes.

Changing the mixed use comprehensive zoning designation to match existing development would not result in more intensive development or other changes in land uses that would impact water resources.

Urban Growth Areas

City of Battle Ground: The Preferred Alternative proposes to change the current land use designations to be consistent with how properties are being used and to reduce the potential for an incompatible land use to locate in the midst of residential use in the future. No impacts are expected from this proposed change. The Preferred Alternative also proposes expansion of the City of Battle Ground UGA by approximately 82 acres. This would bring an additional 0.4 miles of stream, 4.7 acres of floodprone area, 0.04 acres of jurisdictional shoreline, and 29 acres of Category 1 CARA into the UGA (see Table 3-3 and Chapter 4 for stream lengths). The UGA expansion area is also mapped as Category 2 CARA. Portions of the affected area are already developed with rural land uses, but water resources may be affected by more intensive development and activities (e.g., increased stormwater runoff and pollutant loading, decreased water supply, etc.). Impacts would be localized and could be mitigated during project review.

City of LaCenter: The Preferred Alternative proposes expansion of the City of La Center UGA by approximately 73 acres. This would bring an additional 0.6 miles of stream and less than 1 acre of flood-prone area into the UGA (see Table 3-2 and Chapter 4 for stream lengths). The UGA expansion area is also mapped as Category 2 CARA.

While part of the UGA expansion area is currently developed, most of the land consists of pasture and forested areas. Bringing this area into the UGA would allow more intensive development, with the potential for negative effects on water resources. Impacts would be localized and could be mitigated during project review.

City of Ridgefield: The Preferred Alternative proposes to increase the UGA by approximately 111 acres. This would bring 0.5 miles of stream into the UGA (see Chapter 4 for stream lengths). The UGA expansion area is mapped as Category 2 CARA. The proposal could have site-specific impacts when urban holding is lifted, which would allow development for residential use. Such development would add increased impervious surface and intensity. Impacts are localized and would be mitigated during project review.

City of Vancouver: The Preferred Alternative proposes to change approximately 1,100 acres of zoning in the Discovery/Fairgrounds Subarea Plan from Light Industrial to Office Campus or Business Park uses, and to change approximately 465 acres of zoning in the Salmon Creek/University District Subarea Plan from urban low density to accommodate more mixed-uses and higher density residential uses. This could result in moderate impacts to water resources in the area with increased impervious surface and more intense activities. Impacts are localized and could be mitigated during project review.

City of Washougal: The Preferred Alternative proposes to correct an inconsistency between County and City zoning classifications within the southern portion of the Washougal Urban Growth Area. No impacts are expected.

Water Resource	Battleground	La Center	Ridgefield
Floodprone Area			
Floodway Fringe	4.7	0.01	0
Floodway	0	0	0
500 year flood	0	0	0
Total Floodprone Area	4.7	0.01	0
Shorelines	0.04	0	0
Category 1 CARA	29	0	0
Wellhead Protection Areas (Zones)			
1-year	0	0	0
5-year	0	0	0
10-year	0	0	0
Total Wellhead Protection Area	0	0	0

Table 3-2. Preferred Alternative – City UGA Expansion- Existing Water Resources (acres)

3.4 Are there adverse impacts that cannot be avoided?

Development projects that propose to impact water resources are regulated by local critical areas codes and state regulations governing water quality. These regulations require impacts to be avoided and minimized, and unavoidable impacts require compensatory mitigation. These measures help to ensure no net loss of ecological functions on an individual project scale. However, some small level of impact may still occur with each new development. While mitigation is typically required, it is not always successful. Some small-scale activities are exempt from local critical areas review. These small impacts added together can contribute to cumulative effects on local aquatic resources as the drainage basins become more developed. Cumulative impacts would include an increased number of water wells, which in turn increase the potential for groundwater contamination and reduction of water supply, increase impervious surface that contributes to stormwater runoff, and vegetation clearing that degrades the quality of streams and other surface waters.

3.5 Mitigation

3.5.1 Are there mitigation measures beyond regulations that reduce the potential for impacts?

In addition to the regulations discussed above, the County could encourage low impact development (LID) features for new development where appropriate, to reduce stormwater impacts. LID approaches are now required as part of the County's update to its stormwater manual. The County could consider incentives for private property owners to add LID features such as rain gardens to existing developed areas.

The measures identified in Chapter 4 for fish and wildlife would also benefit water resources. For example, restoring riparian vegetation along streams would provide more shade and help to lower water temperatures, which would also increase dissolved oxygen levels in the stream.

Provisions for clustering could help minimize the amount of new wells needed to supply drinking water and the amount of vegetation clearing that would impact streams and wetlands. Zoning code changes to allow lower minimum lot sizes could include requirements for cluster development when considering applications for subdivision. This mitigation measure could help reduce the effects of increased development on water resources. This page is left intentionally blank